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Abstract 
The paper describes a graphic model named Exidiagraph. The model is intended for visu-

alization of tabulated hypersurfaces dimension 5D and higher. Visualization of such hyper-
surfaces is important for a variety of reasons such as quick and adequate understanding of the 
physical, chemical, and other phenomena meanings. For example, an important task in phys-
ics or chemistry is to find the extrema of hyperfunctions obtained during quantum mechani-
cal calculations. In addition, it seems promising to use the model to solve the problem of find-
ing the path with the least energy between the local extrema of the multidimensional hyper-
surface. The Exidiagraph model consists of a circular set of planes associated with 2D coordi-
nate systems. The model is a further development of the idea underlying the Lumigraph 
model. Besides, the visualized Exidiagraph model is aesthetically attractive and has a high 
degree of visibility. 
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1. Introduction 
The term scientific visualization (SV) denotes the visual analysis of research data and the pro-
cess deploys the computer graphics techniques. Being a modern scientific branch SV presents 
the numerical data of scientific research in the form of visual images that facilitate the infor-
mation analysis and the exchange of this information. Scientific visualization makes it possi-
ble to see the hidden processes of scientific experiments. In other words, scientific visualiza-
tion makes visible the invisible phenomena. [1-3] The need to visualize invisible phenomena 
existed long before the emergence of computer technology. The main part of all scientific ex-
periments in physics, chemistry, fluid and gas mechanics, and the theory of elasticity had the 
goal of not only measuring the quantitative characteristics of the phenomena, but also ob-
serving them visually [4-6]. 
In practice, physical or numerical experiments (calculations) lead to multidimensional func-
tions in a tabular form. Visualization of tabulated multidimensional hypersurfaces is a serious 
scientific problem. In these cases, it is necessary to solve the problem of mapping multidi-
mensional data to the form of three-dimensional geometric models and visualizing them by 
computer graphic methods. Generally, visualization of the three-dimensional surface is car-
ried out by NURBS approximation and is not labour-consuming. NURBS curves and surfaces 
are widely deployed in many Computer Aided Design (CAD) applications for representing the 
form of cars, aircraft, ships, shoes and numerous other items with sculptured features [7]. 

https://doi.org/10.26583/sv.12.4.09
mailto:popov_eugene@list.ru
mailto:absterno@gmail.com
mailto:tatpop@list.ru
mailto:natalja.vogt@uni-ulm.de


They are parametrically defined polynomial entities, thus well suited for software implemen-
tation, whilst their rational nature provides additional degrees of freedom compared to their 
non-rational counterparts. The representation exactly reproduces sphere, conic and other 
special surfaces. NURBS have remained a very popular representation for curves and surfaces 
in CAD software.  
Many factors may have contributed to their success including their versatility, thereby allow-
ing CAD models to be transferred between different systems easily. Studies on other spline 
forms have been published subsequently, but none have surpassed NURBS in terms of their 
universal support, despite any advantages they may offer. To visualize 4D function the au-
thors usually apply volumetric modeling methods to represent solid shapes rather than sur-
faces. Doing so enables richer simulation, both for dynamics and for illumination in the pres-
ence of translucency. The volumetric models are represented by voxels as described, for ex-
ample, by James Foley [8]. The division of the area of function definition naturally lends itself 
to a regular grid, making for straightforward representations, and is also easy to build a hier-
archy form. This representation is known as a voxel model. In volumetric modeling an object 
is represented as a collection of voxels in 3D arrangement which may be regular or irregular. 
Cubic voxels inside a uniform grid aligned with the coordinate axes is the simplest and com-
monly used representation. It is very common for fluid flow simulation and medical or geo-
scientific imaging, where the underlying source data are often captured on a regular grid.  
In the work [10], we have proposed a method for rendering of a tabulated 5D hypersurface 
that is a result of quantum-mechanical calculations of molecular energy. However, the prob-
lem of 6D and higher hypersurfaces rendering remains open. This article is dedicated to solv-
ing this problem. 

2. Rendering 5D hypersurface  
In work [9-11] we have supplemented Lumigraph model with an additional 2D plot to display 
a 5D hypersurface. The main idea here is to map the entire Lumigraph (see [12-13]) to it. The 
shape of 2D plot should be efficient enough so that the entire surface is visible to the user. 
This approach is to place the third plane parallel to two initial ones inside the Lumigraph so 
as to find the points of intersection of line segments with it. The authors called it the addi-
tional screen concept. One can see the complete 2D mapping of the whole 5D hypersurface in 
the form of raster image (see Fig. 1) at different locations of the additional screen.  
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Figure 1. The additional screen located at different distances inside Lumigraph 
 
The placement of the additional screen was selected empirically by locating it at different dis-
tances from the coordinate planes. Fig.1 shows that the worst version of the hypersurface im-
age with its minima is observed when the screen is placed exactly in the middle between the 
coordinate planes. The best image can be achieved when the screen is placed at a distance d = 
0.25L, where L is the distance between the coordinate planes. 

3. Rendering 6D-7D hypersurfaces  
We developed a model called Exidiagraph to render 5D, 6D, and 7D surfaces defined in tabu-
lar form. A surface the dimension of which depends on the number of variables is often de-
fined as a multidimensional table. The ability to display such hypersurface in space with a 
number of independent variables equal to 5 or more significantly increases the efficiency of 
analyzing the results of relevant experiments or calculations. 
Mapping a point in a space of dimension that is equal or greater than 6, is feasible using the 
idea implemented in the Lumigraph model and described in [9-11]. As mentioned in these 
works, two parallel planes were used to visualize a point in 4D space, in each of which two 2D 
coordinate systems were defined. Both planes in the aggregate made it possible to uniquely 
determine the straight-line segment between them, which was a model of a four-dimensional 
point. This model of visualization, by analogy with model described in work [12], was called 
the Lumigraph model and used to visualize 5D hypersurface minima.  



 
Figure 2. Exidiagraph space 

 
To evolve this idea, a new model was developed to model a point in 5D (and higher) space 
and render it. The reconstruction of the Lumigraph model was aimed at adding another plane 
to it with 2D coordinate system, supplementing the model to a space of dimension 6D (Fig. 
2).  
Thus, we succeeded in obtaining a coordinate system consisting of three coordinate planes 
arranged in such a way that all planes form a triangle around the Z axis. We call this model 
Exidiagraph (Greek éxi diastáseon gráfima – 6D graph). 
To display the points of the studied hypersurface in the Exidiagraph, the set of coordinates 
can be divided into pairs. For the case of six variables, we can get three pairs of coordinates, 
one pair for each of the three planes. The sequence of coordinates in pairs can be arbitrary. 
We can use a similar approach to visualize spaces of greater dimension, for example, 8D, 10D, 
etc., by breaking the coordinates in pairs and adding a coordinate plane for each additional 
pair of coordinates. One can associate a point with each coordinate plane, corresponding to 
one coordinate pair (x, y). Considering the points obtained on the coordinate planes the verti-
ces of the triangle are depicted in Fig. 3.  
 

 
Figure 3. A point in 6D space rendering in the form of a triangle. 



Thereby, such triangle uniquely corresponds to a point defined by six independent variables. 
If we associate a certain function value with this triangle and display it in the form of the col-
or associated with the color legend, then we obtain a display of a point depending on six in-
dependent variables in 6D space. However, since in the geometric sense, a surface of any di-
mension can be considered as an infinite point set, its entire visualization by the described 
model is a considerable challenge. To illustrate it, Fig. 4 shows a visualization of only a few 
surface points, whence it is clear that even in the case of a limited number of multidimen-
sional points, the picture becomes difficult to perceive. 
 

 
Figure 4. Display of some hyper surface values by triangles. 

 
We propose the following intermediate approach to overcome some perception problem. A 
point in 6D space is associated with the triangle centroid. The correspondence to its specific 
coordinates is established by segments of straight lines connecting the centroid with points 
on the coordinate planes. These segments are called communication lines. If we carry out the 
visualization of centroids (entire given points of hypersurface) by a set of volume elements, 
then a clear picture can be obtained, for example, see Fig.5. The term hyper-voxel is assigned 
to such volume element. We build a color legend based on the tabulated function value. In 
accordance with this legend hyper voxels are painted in the desired color. The color legend 
assumes a color change from blue to red, i.e. blue corresponds to the minimum value of the 
function, while red corresponds to the maximum value. In order to avoid picture cluttering in 
Fig. 5 communication lines are conditionally hidden.  
Further evolution of the Exidiagraph model is associated with giving greater visual clarity to 
the mapping of a hypersurface. The idea is to normalize the position of the entire centroids 
along the Z axis according to the function value at these points as shown in Fig.6, which 
shows a scheme of such procedure to display a point image in 6D space. 
 



 
Figure 5. Display of 7D hyper surface by hyper-voxels. 

 

 
Figure 6. Display of 7D point by ball. 

 
Further, point A in Fig. 6 corresponds to the triangle centroid modeling a point in 6D space. 
Point B is the projection of the centroid onto the XOY plane of Exidiagraph. Point C corre-
sponds to the normalized position of the centroid in accordance with the actual value of the 
hyperfunction at a given point on the surface. For example, the points in this case are 7D 
points, considering their color. Fig.7 is an example of some 7D points (the hypersurface min-
ima. The minima finding algorithm see in [9-11]) of hypersurface in Exidiagraph space. We 
presented these points as a set of balls. 
 



 
Figure 7. Display of some 7D hyper surface points by balls. 

 
The described idea of multidimensional points visualization makes it possible to display a 
multidimensional surface defined in a table form in the Exidiagraph space. We called it an 
adapted hyper voxel model of multidimensional hypersurface in contrast to the model in 
Fig.5. The model is based on the concept of pseudo-voxel, which is an element of space up to 
7D including. In this case, visualization considers the nature of hypersurface as a function in 
the form of a multidimensional table. In order to visualize a multidimensional table each cell 
of it is mapped to a hyper voxel. In its turn, each hyper voxel is visualized according to the 
scheme described in this section. The final visualization in Exidiagraph is shown in Fig.8. In 
fact, this visualization is very compact, the points in space are located more precisely accord-
ing to the real values of the tabular hyperfunction, that provides a visually clearer perception 
of the hypersurface.  
 

 
Figure 8. Display of 7D hyper surface by adapted hyper-voxels. 

 



4. Finding the multidimensional hypersurface extrema 
Mathematically, the problem of finding the function extrema is related to finding such points 
of it, in which the first partial derivatives of functions go to zero, and the second partial deriv-
atives are negative or nonnegative at the same time. 
This issue requires finding such point x that the scalar function f(x1, x2, x3 . . . xn) takes a value 
that is lower than at any neighboring point. For smooth functions, the gradient g = ∇f vanish-
es at the minimum. This problem is also known in mathematics as optimization problem. Op-
timization problem is a famous field of the science, engineering and technology. When solv-
ing optimization problem, it is necessary to calculate the global extremum (or its good ap-
proximation) of a function with multiple variables. The variables which define the optimized 
function can be continuous or discrete and, additionally, they often should satisfy certain 
constraints. Problems of NP-hard complexity class, which include optimization problems, are 
very difficult to solve. Therefore, traditional descent optimization algorithms are not suitable 
for their solution due to the local nature of the processed information [14]. In recent decades 
a lot of new algorithms for Global optimization problem solution have appeared. This led to 
success in a wide class of problem solution in various fields, such as computational chemistry 
and biology, computer science, economics, engineering design and others. But in general, 
there are no efficient methods available to minimize n-dimensional functions. The algorithms 
come from the initial assumption using a search algorithm that tries to move in an oblique 
direction. Algorithms using a gradient function minimize the one-dimensional line along this 
direction until the lowest point with a suitable tolerance is found. Then, the search direction 
is updated according to local information about the function and its derivatives, and the 
whole process is repeated until a true n-dimensional minimum is found. Algorithms that do 
not require a function gradient use a different approach. That is, the Nelder-Mead Simplex 
algorithm supports n + 1 test parameter vectors as vertices of an n-dimensional simplex. The 
algorithm tries to correct the worst vertex of the simplex at each iteration using geometric 
transformations. Iterations continue until the total size of the simplex is sufficiently reduced. 
The problem seems to be very challenging for non-smooth or discrete functions. Actually, 
computational chemistry packages produce molecular energy values in the form of a large 
multidimensional table, depending on 2, 3, 4 or more variables, which correspond to a num-
ber of molecule variables. In this case, tabulated hyper surface has no analytic expression, 
which seriously complicates the search for its minima. In addition, the time for calculating 
energy critically depends on a number of variables, as well as on the calculation step for each 
given variable. With a larger number of variables and more condensed step, the calculation 
time can take up to several months of continuous calculation on super computing platforms. 
It complicates obtaining hypersurface extrema landscape with an acceptable reliability. For 
this problem solution the approach that contains two stages is developed and described in 
works [9-10]. 

5. Conclusion 
As noted above, the described idea can be extended to cases of hypersurfaces with higher or-
ders. The consecutive addition of extra planes with 2D coordinate systems to the Exidiagraph 
space allows displaying hypersurfaces of orders 7D, 8D and higher. There is still one draw-
back associated with the binding of each specific hyper voxel to coordinate systems. The prob-
lem is caused by hiding the hyper voxel communication lines as a result of necessity to avoid 
image overload. However, the disadvantage can be overcome by an interactive database of 
hypervoxel coordinates associated with the Exidiagraph model. 
In conclusion, selecting a programming tool for the development of Exidiagraph model visu-
alizer several platforms were analyzed and the Java language [15] together with its Java 3D 
extension [16] appeared to be the most suitable tools. The Internet technologies and the Java 
language have brought about a fundamental change in the way applications are designed and 
deployed. Java’s “write once, run anywhere” model lessen the complexity and cost normally 



associated with producing software on multiple distinct hardware platforms. “Exidiagraph 
visualizer” has the Certificate of Federal Intellectual Property Service [17]. 
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